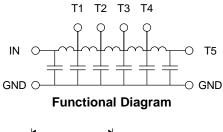
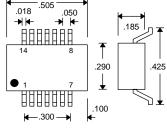
5-TAP SMD DELAY LINE $T_D/T_R = 3$ (SERIES 1518)

FEATURES

•	5 taps of	of equal delay increment	

- Delays to 200ns
- Low profile
- Epoxy encapsulated
- Meets or exceeds MIL-D-23859C


FUNCTIONAL DESCRIPTION


The 1518-series device is a fixed, single-input, fiveoutput, passive delay line. The signal input (IN) is reproduced at the outputs (T1-T5) in equal increments. The delay from IN to T5 (T_D) and the characteristic impedance of the line (Z) are determined by the dash number. The rise time (T_R) of the line is 30% of T_D , and the 3dB bandwidth is given by 1.05 / T_D . The device is available in a 14-pin SMD with two pinout options.

Part numbers are constructed according to the scheme shown at right. For example, 1518-101-500A is a 100ns, 50Ω delay line with pinout code A. Similarly, 1518-151-501 a is 150ns, 500Ω delay line with standard pinout.

SERIES SPECIFICATIONS

- Dielectric breakdown: 50 Vdc
 - Distortion @ output: 10% max.
- Operating temperature: -55°C to +125°C
- Storage temperature: -55°C to +125°C
- Temperature coefficient: 100 PPM/°C

Package Dimensions

TD	T	T _R	ATTENUATION (%) TYPICAL				
(ns)	(ns)	(ns)	Ζ=50 Ω	Ζ=100 Ω	Ζ=200 Ω	Ζ=300 Ω	Ζ=500 Ω
5	1.0	3.0	N/A	5	N/A	N/A	N/A
10	2.0	4.0	3	5	5	N/A	N/A
15	3.0	5.0	3	5	5	N/A	N/A
20	4.0	6.0	3	5	5	5	N/A
25	5.0	7.0	3	5	5	5	7
30	6.0	10.0	3	5	5	5	7
40	8.0	13.0	3	5	5	5	7
50	10.0	15.0	3	5	5	7	7
60	12.0	20.0	3	5	6	7	8
75	15.0	25.0	3	5	6	7	8
80	16.0	26.0	4	5	6	7	8
100	20.0	30.0	4	5	6	7	8
110	22.0	32.0	4	5	6	7	8
125	25.0	40.0	4	5	6	7	8
150	30.0	50.0	N/A	5	8	10	10
180	36.0	60.0	N/A	7	8	10	10
200	50.0	70.0	N/A	8	10	12	12

Notes: T_I represents nominal tap-to-tap delay increment Tolerance on T_D = $\pm 5\%$ or $\pm 2ns$, whichever is greater Tolerance on T_I = $\pm 5\%$ or $\pm 1ns$, whichever is greater "N/A" indicates that delay is not available at this Z

PINOUT CODES

CODE	IN	T1	T2	Т3	T4	T5	GND
STD	1	13	3	11	5	6	7
Α	1	12	4	10	6	7	8,14

©1997 Data Delay Devices

3

C**ES**√inc.

(R)

dat

IN	Signal Input
T1-T5	Tap Outputs
GND	Ground

Note: Standard pinout shown Alt. pinout available

PART NUMBER CONSTRUCTION

1518 - xxx - zzz p

DELAY TIME

IN □1

N/C □2

T2 🛛 3

N/C □4

T4 🛛 5

T5 🗌 6

GND 7

14□ N/C 13□ T1

12 N/C

11 T3

10 N/C

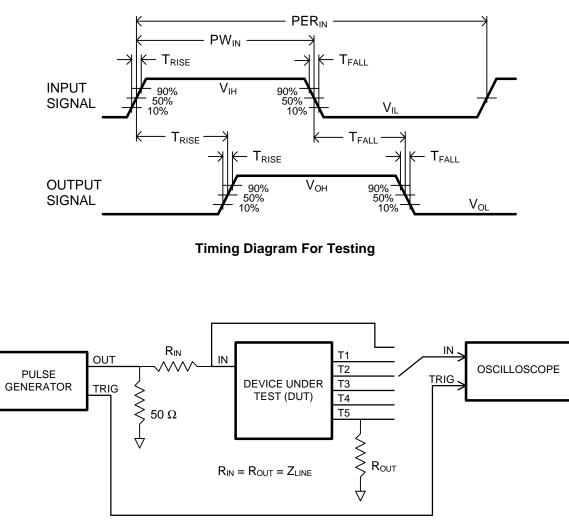
9 N/C

8 N/C

Expressed in nanoseconds (ns) First two digits are significant figures — Last digit specifies # of zeros to follow

IMPEDANCE

Expressed in nanoseconds (ns) First two digits are significant figures Last digit specifies # of zeros to follow


> PINOUT CODE See Table⁻⁻ Omit for STD pinout

DELAY SPECIFICATIONS

TEST CONDITIONS

INPUT:		OUTPUT:	
Ambient Temperature:	$25^{\circ}C \pm 3^{\circ}C$	R _{load} :	10MΩ
Input Pulse:	High = 3.0V typical	C _{load} :	10pf
	Low = 0.0V typical	Threshold:	50% (Rising & Falling)
Source Impedance:	50Ω Max.		
Rise/Fall Time:	3.0 ns Max. (measured		
	at 10% and 90% levels)		
Pulse Width (T _D <= 75ns):	PW _{IN} = 100ns		
(- /	PER _{IN} = 1000ns		
Pulse Width $(T_D > 75ns)$:	$PW_{IN} = 2 \times T_D$		
Period $(T_D > 75ns)$:	$PER_{IN} = 10 \times T_{D}$		

NOTE: The above conditions are for test only and do not in any way restrict the operation of the device.

Test Setup